Parameters Optimization-Based Tracking Control for Unmanned Surface Vehicles

Author:

Wang Renqiang1ORCID,Yan Huaran2,Li Qinrong3,Deng Yubo1,Jin Yutong1

Affiliation:

1. Navigation College, Jiangsu Maritime Institute, Nanjing 211170, China

2. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

3. Transport Planning and Research Institute, Ministry of Transport of China, Beijing 100028, China

Abstract

In this paper, a type of tracking controller on the basis of parameters optimization was proposed for unmanned surface vehicles (USVs). Taking into account the unique nonlinear and large inertia characteristics of USVs, an iterative sliding mode control (ISMC) was adopted to construct the controller including the USVs’ main engine speed controller to determine the longitudinal velocity and the steering controller to control the lateral displacement. In designing, the hyperbolic tangent function with the saturation characteristic is introduced to design the output feedback control law of nonlinear iterative sliding mode. Then, the differential evolution algorithm (DEA) is applied to construct the parameters optimization system for acquiring the optimal parameters of the proposed controller, and the control quality with adaptive ability and robustness of the optimized controller is achieved. It is verified by computer experiments that the optimized controller realizes the tracking control for USV under interference; meanwhile, compared with the iterative sliding mode controller, the control performance of the controller is better and the robustness of that is stronger.

Funder

Basic Science (Natural Science) Research Project of Universities in Jiangsu Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference32 articles.

1. Output Feedback Tracking of Ships

2. Design and verification of heading tracking controller for unmanned surface craft;Y. Fan;Journal of Dalian Maritime University,2017

3. Pulse neural network–based adaptive iterative learning control for uncertain robots

4. Design of efficient steering controller for unmanned surface vehicle;Y. Bai;China Navigation,2018

5. Robust Adaptive Control of an Uninhabited Surface Vehicle

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3