Strain Rate Effect on Mechanical Properties of Cemented Backfill under Dynamic and Static Combined Loading

Author:

Li Xianglong12ORCID,Tao Zihao12ORCID,Wang Jianguo12ORCID,Zuo Ting12ORCID,Ma Jun12ORCID,Li Qiang12ORCID

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China

2. Yunnan Key Laboratory of China-German Blue Mining and Utilization of Special Underground Space, Kunming, China

Abstract

In order to study the influence of pillar stopping blasting on the stability of cemented backfill, the dynamic impact test under low strain rate (61.1∼86.8 s−1) was conducted on cemented backfill with two kinds of strength using three-dimensional coupled static-dynamic SHPB equipment. At the same time, the strain rate effect of failure mode, dynamic strength factor, and energy transfer of backfill were analyzed. The results show that when the cemented backfill was loaded under different strain rates in the initial three-dimensional static pressure environment, the pore compaction process was no longer obvious but directly entered the elastic deformation stage. Within the range of strain rates, the extreme value of dynamic intensity factor (DIF) of CTB230 was 6.8, while the extreme value of dynamic intensity factor of CTB310 specimen did not appear within the range of strain rates due to the improvement of the internal cementation force between particles. The fracture surfaces of specimens were perpendicular to the direction of load, and the failure mode was mainly the axial tensile failure, and the fracture surfaces were mostly close to the loading end. According to energy calculation, reflected energy accounts for 80.4%∼86.6% of incident energy; dissipated energy, 5.5%∼14.3%; transmitted energy, 5.3%∼7.9%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3