Study on Energy Dissipation Characteristics and Damage Law of Backfill under Cyclic Impact

Author:

Li Xianglong12ORCID,Zhou Qinglian1ORCID,Wang Jianguo12ORCID,Sun Wei12ORCID,Yao Yongxin1,Wu Yongbo1,Zhang Zhiping1

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China

2. Yunnan Key Laboratory of China-German Blue Mining and Utilization of Special Underground Space, Kunming, China

Abstract

This research aims to study the damaging effect of underground blasting mining pillars on adjacent cemented filling bodies. The filling bodies were made by mixing ore rock with ash sand by the ratio of 1 : 4 and 1 : 6, respectively, which were subjected to cyclic impact tests with the split-Hopkinson pressure bar under the pressure of 0.2 MPa and 0.24 MPa to analyze the energy dissipation characteristics and damage law. The results showed that as the stress wave induced by the cyclic impact was transmitted to the composite specimen, the energy was absorbed for crack growth and development. Then, the energy reflection ratio increased while the energy dissipation ratio and transmission ratio decreased. For the combined specimen with the cement-sand ratio of 1 : 4, after five cycles of impact under the condition of Ip = 0.2 MPa, the damage variables were 0.07, 0.11, 0.51, and 0.56, respectively, since the second time; under the condition of Ip = 0.24 MPa, the damage variables were 0.17, 0.29, 0.55, and 0.66, respectively. After reaching the damage threshold of 0.63, the damage variable showed nonlinearity. Moreover, it was found that the mechanical properties of the filling body affect the whole combined specimen, and the dynamic strength of the combined specimen with the cement-sand ratio of 1 : 4 was higher than that of the cement-sand ratio of 1 : 6. Therefore, it can be concluded that during the two-step pillar recovery, the amount of blasting explosive can be appropriately reduced, and the number of blasting can be increased to reduce the damaging effect of blasting impact on the cemented pillar and reserved pillar to maintain stability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference42 articles.

1. Mechanical properties and permeability evolution of weakly weathered rocks under cyclic impact;W. Liu;Journal of China Coal Society,2021

2. Study on the Fractal Characteristics of the Pomegranate Biotite Schist under Impact Loading

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3