A New Index of Energy Dissipation Considering Time Factor under the Impact Loads

Author:

Wang XuesongORCID,Guo Lianjun,Xu Zhenyang,Wang Junxiang,Deng Ding,Xu Jinglong,Hu Zhihang

Abstract

Rock failure phenomena are accompanied by abundant energy variation, and the energy dissipation can explain the dynamic mechanical characteristics of the rock. In this study, a series of granite specimens (a total of 60) with different aspect ratios were dynamically loaded by a split Hopkinson pressure bar (SHPB) to explain the energy dissipation and the rock-crushing degree under dynamic load. A new index, namely energy time density (wtd), is proposed to evaluate the energy dissipation considering the time factor. The relationships between strain rate, energy time density, and specific energy absorption are analyzed. A metric (Ku) is defined to describe the degree of rock fragmentation quantitatively. The correlations of fractal dimension and Ku with different impact pressures are compared. It was concluded that there is a noticeable peak point in the energy time density curve. The energy time density of the stress equilibrium point is three times that of the peak point. The energy time density declines after the peak point, then the energy consumption density tends to be stable. The linear relationship between strain rate and peak point energy time density is stronger. The new index can describe energy dissipation well under dynamic loading. In addition, the experimental results indicate that the degree of crush Ku can describe the degree of crush, and the effect of fractal dimension to quantify the fracture characteristics of the rocks is less good in this test. The crushing degree of rocks increases with the increase of strain rate. Furthermore, the prediction effect of energy time density is better than that of strain rate about Ku.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3