Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks

Author:

Xu Xuan,Chi Li-Yuan,Yang Jun,Yu Qi

Abstract

In order to investigate the temporal and morphological characteristics of dynamic tensile fractures, experiments on Brazilian specimens machined from igneous rocks (Breccia and Andesite) are carried out with the split Hopkinson pressure bar (SHPB). Detailed observation of the fracture processes of the Brazilian specimens is captured by high-speed camera at a frame rate of 100,000 frames per second. The rate-dependent effect of the dynamic tensile strength of the two igneous rocks is fitted and predicted by the incubation time criterion. Digital image correlation (DIC) is used to calculate the full-field tensile strain distributions on the specimen surface during the loading stage preceding fracture, and this hysteresis of dynamic fracture relative to stress level is interpreted by introducing the concept of incubation time. After the main crack appears, image processing technology is exploited to extract the pixel information of cracks in the high-speed images. Then, FracPaQ quantifies the morphology of the fragmentized process by filling the binarization of cracks with fracture traces. After coordination of the statistical information from these fracture traces, the rose diagram representing their angles and length weights can visually represent the fragmentized characteristics of the Brazilian specimen. Specifically, length-angle distributions of fracture traces at various moments are consistent with the Gaussian function, and the curve fitting parameters reflect differences in the fracture behaviors between the two igneous rocks. In conclusion, the dynamic fracture characteristics of two igneous rocks in dynamic splitting processes are quantified statistically, which can provide references for relevant research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3