Strain Field Development, Fracturing, and Gas Ejection in Decoupled Charge Blasting Using Granite Cylinders

Author:

Chi Li YuanORCID,Xu Xuan,Zhang Zong-Xian,Yang Jun

Abstract

AbstractThis study explored the fracture process of granite cylinders with a centric charge, varying decoupling ratios by conducting laboratory-scale experiments and numerical simulations. In experiments, the three-dimensional (3D) digital image correlation (DIC) technique was employed, using frames captured by two synchronized high-speed cameras. This instrumentation permitted the observation of full-field strain variation, the development of fractures, and gaseous products escaping from the cylinders’ surfaces. Granite cylinders measuring 240 mm in diameter and 300 mm in length served as specimens in blasting experiments, and each specimen had a charge of approximately 3 g. Specimens had a centric blasthole with a diameter of either 10 mm, 14 mm, or 20 mm. The corresponding decoupling ratio varied from 1.8 to 3.6, and the gap between the charge and the blasthole wall was filled with water or air. The experimental results showed that: (1) specimens with decoupling ratios of 1.9 and 2.6 exhibited initial strains on the cylindrical surface between 20 μs and 40 μs. (2) Specimens with water-filled blastholes developed fractures faster and in a denser manner compared to those with air-filled blastholes. In addition, fractures resulting from air-filled blastholes appeared smoother than those from water-filled blastholes. (3) The gas ejection time for the air-filled blasthole remained basically consistent across decoupling ratios ranging from 1.5 to 3.61, varying between 400 μs and 520 μs. The utilization of water-filled blastholes effectively minimized the escape of gaseous products from the cylindrical surface. Numerical simulation conducted with LS-DYNA exhibited results that aligned well with the observed fracture patterns in the experiments. This study aims to provide a better understanding of the fundamental mechanisms of rock behaviors in decoupled charge blasting.

Funder

National Natural Science Foundation of China

University of Oulu

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3