Impact Response Prediction Method of Packaging Systems with a Key Component considering Different Excitations and Cushioning Materials

Author:

Xiao Heye1ORCID,Xu ChiZhen2ORCID,Yuan Focai3ORCID,Zhang Xudong14ORCID,Bai Junqiang1ORCID,Zhou Jie2ORCID

Affiliation:

1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

2. School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

3. Xi’an Modern Control Technology Research Institute, Xi’an, Shaanxi 710065, China

4. Beijing Blue Sky Innovation Center for Frontier Science, Beijing, 100076, China

Abstract

Nonlinear dynamic models of the packaging systems that consider different excitations and cushioning materials are proposed to analyze their impact responses in this paper. To solve the nonlinear dynamic equations of the models, Newmark method is combined with Newton-Arithmetic mean method to transfer nonlinear equations to the linear discretization equations. Then, the acceleration responses and dropping damage boundary curves (DDBCs) of different nonlinear cushioning packaging systems are calculated conveniently with initial conditions. The good agreements between the simulated and tested results prove the accuracy and effectiveness of the proposed method. Furthermore, the effects of excitations parameters on the DDBCs of the packaging systems are analyzed. It is found that the key parameter for introducing differences between simulated and measured DDBCs is inappropriate duration configuration in the acceleration pulse test.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3