Singularity-Free Adaptive Controller for Uncertain Hysteresis Suspension Using Magnetorheological Elastomer-Based Absorber

Author:

Truong Hoa Thi1,Nguyen Xuan Bao1ORCID,Bui Cuong Mai1

Affiliation:

1. The University of Danang, University of Technology and Education, Danang, Vietnam

Abstract

The magnetorheological elastomer (MRE) is a smart material widely used in recent vibration systems. A system using these materials often faces difficulties designing the controller such as unknown parameters, hysteresis state, and input constraints. First, a model is designed for the MRE-based absorber to portray the behavior of MRE and predict the appropriate electric current supplied. The conventional adaptive controller often suffers from so-called control singularities. The singularity-free adaptive controller is proposed to eliminate the singularity with parametric uncertainty. The proposed controller consists of four components: an adaptive linearizing controller, a deputy adaptive neural network controller, an auxiliary part designed for the controller to overcome the input constraint problem, and a smooth switching algorithm used to exchange the takeover rights of the two controllers. Moreover, the controller is designed to obtain the stabilization of hysteretic state estimation for the vibration system. The adaptive algorithms are proposed to update the unknown system parameters and to observe the unmeasurable hysteretic state. Meanwhile, closed-loop system stability is comprehensively assessed. Finally, the simulation performed on a quarter-car suspension with an MRE-based absorber shows the proposed controller's efficiency.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3