Properties and influence of magnetic fields on iron particles of anisotropic magnetorheological elastomers

Author:

Nguyen Quang Du1,Truong Hoa Thi1ORCID,Nguyen Xuan Bao1ORCID,Le Cung2ORCID,Nguyen Minh Tien1ORCID

Affiliation:

1. 1 The University of Danang – University of Technology and Education, 48 Cao Thang, Danang, Vietnam

2. The University of Danang – University of Science and Technology 2 , 54 Nguyen Luong Bang, Danang, Vietnam

Abstract

The magnetorheological elastomer (MRE) is an intelligent material whose mechanical properties can be rapidly adjusted under a magnetic flux density. This material’s mechanical properties change due to the interaction between the iron particles inside the material. Understanding the influence of magnetic flux on iron particles in MRE materials is essential. Studies have proven that the distance and angle of inclination between iron particles significantly affect the magnetic flux density and the interaction force between the particles. Therefore, the distribution of iron particles substantially affects the material’s properties. However, understanding magnetic flux through magnetic particles is necessary to improve the material’s mechanical properties and to design magnetic field systems in systems using the materials. This study maps three problems affecting magnetic flux density to the properties of MRE. First, the mechanical characteristics of the MRE were presented in the frequency, amplitude, magnetic flux density, and magnetic flux inclination domains relative to the particle chain. Next, the influence of the magnetic flux on the particle chain was investigated based on the dipole interaction model and the magnetic force on iron particles. The finite element method also explored the magnetic flux distribution in the MRE material. Finally, the response of the single-degree-of-freedom damping system is tested experimentally. The results show that the influence of the magnetic flux on the iron particles in the MRE material is significant. The research results aim to improve the mechanical properties of MRE materials.

Funder

University of Technology and Education – The University of Danang

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3