A Review on Vibration Control Strategies Using Magnetorheological Materials Actuators: Application Perspective

Author:

Masa’id Aji1ORCID,Lenggana Bhre Wangsa1,Ubaidillah U.1ORCID,Susilo Didik Djoko1,Choi Seung-Bok23ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

2. Department of Mechanical Engineering, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh City 70000, Vietnam

3. Department of Mechanical Engineering, The State University of New York, Korea (SUNY Korea), Incheon 21985, Republic of Korea

Abstract

Magnetorheological (MR) materials are a group of smart materials used in new technologies with controlled reliability. The development of these materials is expanding, starting from MR fluids, elastomers, grease, and gel. This large number of material types further expands the various applications of MR materials as a creative technology to support performance enhancement. For example, MR fluid is used to improve the performance of shock absorbers such as vehicle suspension, the damping of building structures, and polishing of the workpiece. MR elastomers are used for engine mounting, insulation base, and many other applications with intelligent material properties such as stiffness controllability. However, there are still complexities in the practical implementation of the control system beyond reliability. Many previous studies have focused on the performance improvement and reliability of MR materials as smart materials for application devices and systems. In this review article, the specific discussion related to vibration control strategies in MR material-based systems was thoroughly investigated. To discuss this point, many MR applications including transportation system and vibration isolation were adopted using different types of control strategies. Many different control strategies that have been used for MR applications such as fuzzy logic control, optimal control, and skyhook control are discussed in-depth in terms of the inherent control characteristics of merits and demerits.

Funder

Hibah Non APBN UNS—International Collaboration 2023

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3