Affiliation:
1. Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Tai Yuan 030051, China
2. School of Computer and Control Engineering, North University of China, Taiyuan 030051, Shanxi, China
Abstract
This paper proposed three methods to compensate the temperature energy influence drift of the MEMS vibration gyroscope, including radial basis function neural network (RBF NN), RBF NN based on genetic algorithm (GA), and RBF NN based on GA with Kalman filter (KF). Three-axis MEMS vibration gyroscope (Gyro X, Gyro Y, and Gyro Z) output data are compensated and analyzed in this paper. The experimental results proved the correctness of these three methods, and MEMS vibration gyroscope temperature energy influence drift is compensated effectively. The results indicate that, after RBF NN-GA-KF method compensation, the bias instability of Gyros X, Y, and Z improves from 139°/h, 154°/h, and 178°/h to 2.9°/h, 3.9°/h, and 1.6°/h, respectively. And the angle random walk of Gyros X, Y, and Z was improved from 3.03°/h1/2, 4.55°/h1/2, and 5.89°/h1/2to 1.58°/h1/2, 2.58°/h1/2, and 0.71°/h1/2, respectively, and the drift trend and noise characteristic are optimized obviously.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献