A Comprehensive Model for Estimating Stimulated Reservoir Volume Based on Flowback Data in Shale Gas Reservoirs

Author:

Chen Qi1,Wang Shaojun2,Zhu Dan3,Ren Guoxuan4,Zhang Yuan1,Hu Jinghong1ORCID

Affiliation:

1. Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, China University of Geosciences, Beijing 100083, China

2. Research Institute of Petroleum Exploration & Development, Beijing 100083, China

3. The 5th Oil Production Plant, Changqing Oilfield, Xi’an 710021, China

4. Leewen-Cobra International Energy (Beijing) Technology, Co., Ltd., 100084, China

Abstract

Stimulated reservoir volume (SRV) which is generated by horizontal drilling with multistage hydraulic fracturing governs the production in the shale gas reservoirs. Although microseismic data has been used to estimate the SRV, it is high-priced and sometimes overestimated. Additionally, the effect of stress sensitivity on SRV is not considered in abnormal overpressure areas. Thus, the objective of this work is to characterize subsurface fracture networks with stress sensitivity of permeability through the shale gas well production data of the early flowback stage. The flowback regions are first identified with the flowback data of two shale gas wells in South China. Then, we measured the permeability stress sensitivity of the core after fracturing, coupled to the dynamic relative permeability (DRP) calculation to obtain an accurate and simple DRP curve. After that, a comprehensive model is built considering dynamic two-phase relative permeability function and stress sensitivity. Finally, we compared the calculated results with the microseismic data. The results show that the proposed model could reasonably predict the SRV using the flowback data after fracturing. Additionally, compared with the microseismic data, the stress sensitivity should be included, especially in the abnormal overpressure block. It is believed that this mathematical model is accurate and useful. The work provides an efficient approach to estimate stimulated reservoir volume in the shale gas reservoirs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3