Analysis of Factors Influencing Three-Dimensional Multi-Cluster Hydraulic Fracturing Considering Interlayer Effect

Author:

Zhou Xin12,Liu Xiangjun13,Liang Lixi13

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China

3. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China

Abstract

This study establishes a three-dimensional cohesive model of multi-cluster hydraulic fracturing using finite element method (FEM). It fully considers the interaction between the interlayer and the reservoir and analyzes the key factors influencing fracture propagation. The results show that during the initial stage of hydraulic fracturing, the width of the edge fracture is greater than that of the mid fracture, while the situation is reversed for the fracture length. A larger cluster spacing leads to less interaction between fractures, while a greater number of clusters increases the interaction between fractures. With an increase in displacement, the lost fracturing fluid entering the formation enhances the interaction between fractures. An increase in elastic modulus results in a decrease in the width and height of edge fractures but an increase in their length, with little impact on mid fractures. As Poisson’s ratio increases, there is little change in the fracture morphology of edge fractures, while the width and height of mid fractures increase significantly. With an increase in permeability, the influx of fracturing fluid into the interlayer decreases, leading to a reduction in the interaction between fractures. Finally, the study analyzes and discusses the impact of these parameters on the SRV (stimulated reservoir volume) in both the reservoir and the interlayer. These findings provide new insights for hydraulic fracturing and contribute to improving its productivity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3