Velocity model calibration for surface microseismic monitoring based on a 3D gently inclined layered equivalent model

Author:

Wang Chunlu12,Wei Yanfei12,Sun Feng12,Zhou Xiaohua12,Jiang Haiyu3,Chen Zubin12

Affiliation:

1. College of Instrumentation and Electrical Engineering, Jilin University , Changchun 130026 , China

2. Key Laboratory of Geo-Exploration Instrumentation of Ministry of Education, Jilin University , Changchun 130026 , China

3. College of Mechanical and Electric Engineering, Changchun University of Science and Technology , Changchun 130022 , China

Abstract

Abstract Shale gas has become a major source of natural gas production and has received worldwide attention. Hydraulic fracturing is widely performed to stimulate oil and gas wells with considerable success. Given high-precision microseismic (MS) event locations, we can predict the development trend and region of fracturing and evaluate the stimulation effect, thereby providing technical guidance for subsequent exploitation. An accurate velocity model is essential for MS event positioning. However, simple velocity models, such as the uniform or vertical transverse isotropy (VTI) velocity model, are generally applied to calibrate the velocity model. Despite calibration, the VTI model may still face challenges in obtaining accurate MS event locations. Based on the structural characteristics of shale, we propose a novel local velocity model calibration algorithm for surface MS monitoring. To calibrate the velocity model, the actual strata interfaces are replaced with 3D gently inclined planes. We use very fast simulated annealing to concurrently tune the velocity, depth, and angle parameters of the model. Through the assessment of both the stacked amplitude at the position of the perforation shot and the relocation error of the perforation shot, we determine the ideal velocity model. To evaluate the effectiveness of our approach, we conduct experiments on both a synthetic model and a field dataset, and statistically analyze the location error. The results show that the proposed method obviously reduces the perforation shot relocation error and is well-suited for calibrating velocity models that are close to slightly inhomogeneous layered media.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Education Department of Jilin Province

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3