Localization for surface microseismic monitoring based on arrival time correction and VFOM

Author:

Wang ChunluORCID,Xu Zeyan,He Renjie,Zhang Linhang,Wang Jiang,Zhou Xiaohua,Chen Zubin

Abstract

Abstract Unconventional resources have emerged as the primary source to meet the escalating demand for energy consumption, with hydraulic fracturing standing out as an effective means of boosting production. The utilization of microseismic monitoring is crucial for acquiring real-time or semi-real-time extension information of the fracture network to guide the fracturing process. The precise positioning of microseismic events is a fundamental aspect of microseismic monitoring. Traditional methods relying on (relative) arrival time significantly impact positioning accuracy due to picking errors. While waveform-based methods offer high accuracy, they require precise velocity models and are time-consuming. To overcome challenges associated with arrival time pickup and velocity accuracy, we introduce a virtual field optimization method (VFOM) based on arrival time correction. Initially, an equivalent velocity model is established, and the arrival time difference resulting from the model transformation of the master event is calculated to correct the observed arrival time of the target event. Subsequently, we match detector pairs, establish hyperboloids based on the corrected arrival time difference, and employ the intersection point of all hyperboloids as the positioning result. After that, we use the location results of the master event to enhance the accuracy of the target event. Finally, we apply the proposed method to both synthetic test and field datasets, demonstrating a significant improvement in the positioning accuracy and stability provided by the novel method. The robustness against arrival time error renders it a suitable choice for surface monitoring applications where signal quality is compromised. Furthermore, the simplified velocity model significantly diminishes the computational requirements in the positioning process, enhancing its efficiency, and consequently holds vast potential for application in real-time monitoring.

Funder

National Natural Science Foundation of China

Education Department of Jilin Province, China

Science and Technology Department of Jilin Province, China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3