Controlled Wrinkling Analysis of Buckled Thin Films on Gradient Elastic Substrate System: A Numerical Study

Author:

Ali Ishtiaq1ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science King Faisal University, P.O. Box 400 Postcode 31982, Al-Ahsa, Saudi Arabia

Abstract

Continuous change in wrinkle patterns process of thin films to a gradient substrate is the most challenging problem regarding applying reliable and robust numerical methods for postbuckling analysis of the film/substrate system. For example, in the finite element method, the postbuckling simulation suffers from the convergence issue, while, in spectral methods, it is very difficult to capture the localized behavior in soft matters when the boundary conditions are complex. When a thin film is compressed, it can form a wrinkle of a certain amount of wavelength when the compression exceeds a critical value. The compressed compliant substrate system translates to sinusoidal wrinkles and then to period-doubling wrinkling after further compression. In this work, we investigate the mathematical model arising from the changing nature of wrinkle patterns of postbuckled thin films using a robust and efficient numerical algorithm based on the spectral method to evolve the wrinkle patterns. We consider the gradient substrates of three typical variations in the modulus, namely, the symmetry, exponential, and power-law model. It has been observed that the stable equilibrium path has two bifurcation points. At the first bifurcation point, the buckling instability of wrinkling occurs, while the period-doubling buckling instability occurs at the second bifurcation point. For the substrates of material gradients of various types, the amplitude and wavelength are obtained. This study may help in better understanding of wrinkle patterns formation which could be very useful for the designing of stretchable and flexible electronic devices of most substrate systems and to avoid resonance in the noise environment.

Funder

King Faisal University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3