The Influence of Buffer Layer Type on the Electrical Properties of Metallic Layers Deposited on Composite Textile Substrates in the PVD Process

Author:

Lebioda Marcin1ORCID,Korzeniewska Ewa1ORCID

Affiliation:

1. Institute of Electrical Engineering Systems, Lodz University of Technology, Stefanowskiego 18, 90-537 Lodz, Poland

Abstract

In the era of developing wearable electronics, the miniaturization of electronic systems and their implementation in the textile industry is one of the key issues. For this reason, it is important to select the appropriate textile substrates upon which it is possible to produce electroconductive structures, as well as their selection from the point of view of the electrical parameters’ stability. For this purpose, research related to the effect of heating a substrate on the resistance of the structures produced in the process of physical vacuum planting was conducted. Textile composites with a buffer layer made of polyurethane, Teflon, and acrylic were used as substrates in the tests. Such layers are an integral part of textile composites and a necessary element for producing structures with continuous electrical conductivity. The conducted tests showed that a buffer layer made of polyurethane (thermal conductivity, e.g., PERMACOL 5450 resin 0.16 W/mK) heated to 15 °C above room temperature was a layer that introduced changes into the surface resistance of the structures. The resistance values of the samples produced on a substrate containing a buffer layer of polyurethane varied in the range of 9–23%, depending on the manufacturer of the composite in the case of a self-heating mode, and in the case of an external heating mode, these changes were smaller and ranged from 8 to 16%. Such a phenomenon occurred regardless of the type of applied metal, and this was not observed in the case of composites with a Teflon or acrylic sublayer. For this reason, it is necessary to take into account the fact that textronic structures made on substrates containing a polyurethane layer may change the surface resistance depending on the temperature. The electrical parameters of such structures were checked by heating the structure using an external heater and self-heating mechanism. The same phenomenon was observed in both cases.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3