Rolling Bearing Diagnosis Based on Adaptive Probabilistic PCA and the Enhanced Morphological Filter

Author:

Luo Yuanqing1,Chen Changzheng1ORCID,Zhao Siyu1,Kong Xiangxi1,Wang Zhong2

Affiliation:

1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China

2. School of Mechanical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China

Abstract

Early fault diagnosis of rolling element bearing is still a difficult problem. Firstly, in order to effectively extract the fault impulse signal of the bearing, a new enhanced morphological difference operator (EMDO) is constructed by combining two optimal feature extraction-type operators. Next, in the process of processing the test signal, in order to reduce the interference problem caused by strong background noise, the probabilistic principal component analysis (PPCA) method is introduced. In the traditional PPCA method, two important system parameters (decomposition principal component k and original variable n) are usually set artificially; this will greatly reduce the noise reduction performance of PPCA. To solve this problem, a parameter adaptive PPCA method based on grasshopper optimization algorithm (GOA) is proposed. Finally, combining the advantages of the above algorithms, a comprehensive rolling bearing fault diagnosis method named APPCA-EMDF is proposed in this paper. Experimental comparison results show that the proposed method can effectively diagnose the vibration signals of rolling element bearing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3