5G Multimedia Precision Marketing Based on the Improved Multisensor Node Collaborative Filtering Recommendation Algorithm

Author:

Si Kai12ORCID,Zhou Min1ORCID,Qiao Yingfang2

Affiliation:

1. China University of Mining and Technology, Xuzhou 221116, China

2. Xuzhou University of Technology, Xuzhou 221116, China

Abstract

The rapid development of web technology has brought new problems and challenges to the recommendation system: on the one hand, the traditional collaborative filtering recommendation algorithm has been difficult to meet the personalized recommendation needs of users; on the other hand, the massive data brought by web technology provides more useful information for recommendation algorithms. How to extract features from this information, alleviate sparsity and dynamic timeliness, and effectively improve recommendation quality is a hot issue in the research of recommendation system algorithms. In view of the lack of an effective multisource information fusion mechanism in the existing research, an improved 5G multimedia precision marketing based on an improved multisensor node collaborative filtering recommendation algorithm is proposed. By expanding the input vector field, the features of users’ social relations and comment information are extracted and fused, and the problem of collaborative modelling of these two kinds of important auxiliary information is solved. The objective function is improved, the social regularization term and the internal regularization term in the vector domain are analysed and added from the perspective of practical significance and vector structure, which alleviates the overfitting problem. Experiments on a large number of real datasets show that the proposed method has higher recommendation quality than the classical and mainstream baseline algorithm.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3