A collaborative filtering recommendation algorithm based on information theory and bi-clustering
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-018-3959-2.pdf
Reference30 articles.
1. Zhou Y, Wilkinson D, Schreiber R, Pan R (2008) Large-scale parallel collaborative filtering for the Netflix prize. In: Fleischer R, Xu J (eds) Algorithmic aspects in information and management. Springer, Berlin, pp 337–348. https://doi.org/10.1007/978-3-540-68880-8_32
2. Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative filtering recommender systems. Found Trends Hum-Comput Interact 4(2):81–173. https://doi.org/10.1561/1100000009
3. Barragáns-Martínez AB, Costa-Montenegro E, Burguillo JC, Rey-López M, Mikic-Fonte FA, Peleteiro A (2010) A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Inf Sci 180(22):4290–4311. https://doi.org/10.1016/j.ins.2010.07.024
4. Breese JS, Heckerman D, Kadie C (2013) Empirical analysis of predictive algorithms for collaborative filtering. CoRR abs/1301.7363. arXiv: 1301.7363
5. Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, pp 285–295. https://doi.org/10.1145/371920.372071
Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel fuzzy co-clustering method for recommender systems via inverse stereographic NMF;Expert Systems with Applications;2025-01
2. Zero-Shot Content-Based Crossmodal Recommendation System;Expert Systems with Applications;2024-12
3. Emerging Trends in Data-Driven Marketing;Advances in Marketing, Customer Relationship Management, and E-Services;2024-07-12
4. A novel target item-based similarity function in privacy-preserving collaborative filtering;The Journal of Supercomputing;2024-05-27
5. Sparse K-means clustering algorithm with anchor graph regularization;Information Sciences;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3