Design and Research of Semiactive Quasi-Zero Stiffness Vibration Isolation System for Vehicles

Author:

Li Shaohua1ORCID,Feng Guizhen23ORCID,Zhao Quan13

Affiliation:

1. State Key Laboratory of Mechanical Behavior and System Safety, Train Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

2. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Abstract

The vehicle-mounted equipment is easy to be disturbed by external vibration excitations during transportation, which is harmful to the measurement accuracy and performance of the equipment. Aiming at the vibration isolation of the vehicle-mounted equipment, a semiactively controlled quasi-zero stiffness (QZS) vibration isolator with positive and negative stiffness is proposed. The vertical spring is paralleled with a magnetorheological (MR) damper, and the semiactive on-off control scheme is adopted to control the vibration. The analytical expression of the isolator’s displacement transmissibility is derived via the averaging method. Then, the vibration isolation performance under different road excitations and different driving speeds is simulated and compared with the uncontrolled passive QZS vibration isolator. In addition, the mechanical structure of the semiactive QZS isolator is designed and manufactured, and the test system is built by LabVIEW software and PXI embedded system. The isolation effect of the semiactive QZS isolator is verified through test data. It is found that the proposed semiactive QZS isolator shows excellent vibration isolation performance under various road excitations, while the passive QZS isolator is effective only under harmonic excitations. The vertical acceleration of vehicle-mounted device can be decreased over 70% after isolation, and the vibration isolation effect is remarkable. The design idea and research results of the semiactive QZS isolator may provide theoretical guidance and engineering reference for vibration isolation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference35 articles.

1. Nonlinear dissipative devices in structural vibration control: A review

2. Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness;Z. Lu;Applied Mathematical Modelling,2020

3. A low frequency horizontal vibration reduction method for vehicle mounted equipment;N. Du;Journal of Vibration and Shock,2017

4. A torsion–translational vibration isolator with quasi-zero stiffness

5. Design of a quasi-zero stiffness isolation system for supporting different loads;Y. Kan;Journal of Sound And Vibration,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3