Quasi-Zero Stiffness-Based Synchronous Vibration Isolation and Energy Harvesting: A Comprehensive Review

Author:

Chen Zhiwen,Chen Zhongsheng,Wei Yongxiang

Abstract

In recent years, the advantages of nonlinearity in vibration isolation and energy harvesting have become increasingly apparent. The quasi-zero stiffness (QZS) of the nonlinear term provided by the negative stiffness element can achieve vibration isolation under low-frequency environments while improving the efficiency of energy harvesting. The QZS provides a new research idea for simultaneous vibration isolation and energy harvesting. The main purpose of this paper is to review past research results, summarize possible problems, and discuss trends. After briefly analyzing the basic principle of QZS vibration isolation, the progress of QZS in vibration isolation and energy harvesting in recent years is reviewed. At the same time, main challenges of QZS in realizing synchronous vibration isolation and energy harvesting are also discussed. Finally, according to the existing QZS challenges, the future development trend of QZS is proposed. This paper would provide a quick guide for future newcomers to this field.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3