Affiliation:
1. Department of Mathematics, University of the Engineering and Technology, Lahore 54890, Pakistan
Abstract
This article addresses the numerical exploration of steady and 2D flow of MHD Carreau nanofluid filled with motile microorganisms over three different geometries, i.e., plate, wedge, and stagnation point of a flat plate. The influence of magnetic field, viscous dissipation, thermophoresis, and Brownian motion is considered for both cases, i.e., shear thinning and shear thickening. A set of relevant similarity transformations are utilized to obtain dimensionless form of governing coupled nonlinear partial differential equations (PDEs). The transformed system of ordinary differential equations (ODEs) is then numerically solved by bvp4c via MATLAB based on shooting technique and Runge–Kutta–Fehlberg (RKF) scheme via MAPLE. Also, a numerical analysis has been made for skin friction factor, heat, and mass transfer rates. Results elucidate that all the profiles except velocity show decreasing behavior for higher values of magnetic field parameter. Among all three flow geometries for both shear thinning and shear thickening cases, the flow over a plate has lesser skin friction factor. The nanoparticle concentration and density of motile microorganism decrease in both the shear thinning and shear thickening cases, for increasing values of Brownian motion (Nb), but reverse trend is observed for rising values of thermophoresis parameter (Nt). Furthermore, it is observed that, as we increase the values of suction/injection parameter (S), the velocity of fluid increases but decreases the fluid temperature, concentration of mass and density of motile organisms over a plate, wedge, and stagnation point of a flat plate. Also, we observed that shear thinning nanofluid has higher rate of heat, mass, and motile microorganisms mass transfers than shear thickening fluid. Both shear thinning and thickening nanofluid have a low rate of heat/mass and gyrotactic microorganisms mass transfer over plate among wedge and stagnation point flow.
Subject
General Engineering,General Mathematics