Transporting Heat with Hybrid Carreau Nanofluid Over Rotating Cone with Slip and Hall Parameters

Author:

Darvesh Adil1,Sánchez-Chero Manuel2,Sánchez-Miranda Nicole Anarella3,Ramirez Edgard Chapoñan4,Céspedes Pedro Aníbal Solís5,Alvarez Marcos Timana6

Affiliation:

1. Department of Mathematics and Statistics, Hazara University, Mansehra, 21300, Pakistan

2. Grupo de Investigación, Desarrollo e Innovación en Industrias Alimentarias, Universidad Nacional de Frontera, Sullana, 20101, Perú

3. Facultad de Ingeniería y Arquitectura Universidad de San Martin de Porres, Chiclayo, 14000, Perú

4. Universidad Señor de Sipán, Chiclayo, 14000, Perú

5. Universidad Alas Peruanas, Lima, 15023, Perú

6. Universidad Nacional de Frontera, Sullana, 20101, Perú

Abstract

Background: Improvement in thermal system and its efficiency can be achieved by involving the hybrid nanoparticles due to its vital impact. This report analyzes Carreau Nanofluid with various nanoparticles for enhanced thermal efficiency. A rotating permeable cone with Hall and Ion slip forces is utilized in the setup. To evaluate momentum transportation, a cone is rotated and generalized Ohm’s law is applied, including an inclined magnetic force. Heat transfer analysis considers viscous dissipation, heat generation, and joule heating. Please shorten the given text for me to be able to assist you better. Novelty: This study innovatively uses spectral relaxation to solve characteristics of a magnetized, inclined Carreau Nanofluid. It investigates the effects of Hall and ion slip forces on a rotating, heated porous cone. No discussion yet on inclined magnetized environment for Carreau Yasuda NF movement over rotating cone with spectral relaxation. Formulation: PDEs governing Carreau fluid viscosity simulation transformed into ODEs with similarity transformation. The study includes graphs and tables displaying the impact of limitations on current and velocity fields. Findings: Higher energy and Eckert numbers increase heat transport, while Hall ion slip parameters enhance liquid waves. Hybrid nanoparticle speed slows due to ion slip and Hall parameters.

Publisher

American Scientific Publishers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3