Investigation on Two-Stop-Line Signalized Roundabout: Capacity and Optimal Cycle Length

Author:

Jiang Ze-hao12ORCID,Wang Tao3ORCID,Li Chao-yang3,Pan Fei1,Yang Xiao-guang1ORCID

Affiliation:

1. Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 200092, China

2. Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 606-8501, China

3. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Two-stop-line signalized roundabouts (TSLSR) are widely utilized in China. To calculate the capacity and optimal cycle length accurately, a model considering internal space constraint of the roundabout is developed in this paper. Firstly, the operational principle of TSLSR is analyzed. TSLSR is modeled as being equivalent to a four-phase intersection with left-turn protection phases, and the left-turn lane is further simplified as the “short-lane model”. Secondly, based on the above analysis, the capacity of TSLSR is modeled and additionally, the accuracy and sensitivity of the model are also analyzed. Finally, the optimal cycle length of TSLSR which maximizes the capacity is put forward. Results show that the accuracy of the capacity model is low without considering the internal space constraint of the roundabout. However, the model developed in this paper is shown to improve the accuracy (about 20%) and control the relative error to be within 10%. The parameter sensitivity analysis demonstrates that the cycle length and radius of the central island have a significant influence on the capacity of the left-turn lane and results in an optimal value of signal cycle length maximizing the capacity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3