iMPT-FDNPL: Identification of Membrane Protein Types with Functional Domains and a Natural Language Processing Approach

Author:

Chen Wei1ORCID,Chen Lei1ORCID,Dai Qi2ORCID

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

2. College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

Membrane protein is an important kind of proteins. It plays essential roles in several cellular processes. Based on the intramolecular arrangements and positions in a cell, membrane proteins can be divided into several types. It is reported that the types of a membrane protein are highly related to its functions. Determination of membrane protein types is a hot topic in recent years. A plenty of computational methods have been proposed so far. Some of them used functional domain information to encode proteins. However, this procedure was still crude. In this study, we designed a novel feature extraction scheme to obtain informative features of proteins from their functional domain information. Such scheme termed domains as words and proteins, represented by its domains, as sentences. The natural language processing approach, word2vector, was applied to access the features of domains, which were further refined to protein features. Based on these features, RAndom k-labELsets with random forest as the base classifier was employed to build the multilabel classifier, namely, iMPT-FDNPL. The tenfold cross-validation results indicated the good performance of such classifier. Furthermore, such classifier was superior to other classifiers based on features derived from functional domains via one-hot scheme or derived from other properties of proteins, suggesting the effectiveness of protein features generated by the proposed scheme.

Funder

Natural Science Foundation of Shanghai

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3