Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin
-
Published:2009-08-13
Issue:1
Volume:7
Page:
-
ISSN:1741-7007
-
Container-title:BMC Biology
-
language:en
-
Short-container-title:BMC Biol
Author:
Almén Markus Sällman,Nordström Karl JV,Fredriksson Robert,Schiöth Helgi B
Abstract
Abstract
Background
Membrane proteins form key nodes in mediating the cell's interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins.
Results
Here we mined the human proteome and identified the membrane proteome subset using three prediction tools for alpha-helices: Phobius, TMHMM, and SOSUI. This dataset was reduced to a non-redundant set by aligning it to the human genome and then clustered with our own interactive implementation of the ISODATA algorithm. The genes were classified and each protein group was manually curated, virtually evaluating each sequence of the clusters, applying systematic comparisons with a range of databases and other resources. We identified 6,718 human membrane proteins and classified the majority of them into 234 families of which 151 belong to the three major functional groups: receptors (63 groups, 1,352 members), transporters (89 groups, 817 members) or enzymes (7 groups, 533 members). Also, 74 miscellaneous groups with 697 members were determined. Interestingly, we find that 41% of the membrane proteins are singlets with no apparent affiliation or identity to any human protein family. Our results identify major differences between the human membrane proteome and the ones in unicellular organisms and we also show a strong bias towards certain membrane topologies for different functional classes: 77% of all transporters have more than six helices while 60% of proteins with an enzymatic function and 88% receptors, that are not GPCRs, have only one single membrane spanning α-helix. Further, we have identified and characterized new gene families and novel members of existing families.
Conclusion
Here we present the most detailed roadmap of gene numbers and families to our knowledge, which is an important step towards an overall classification of the entire human proteome. We estimate that 27% of the total human proteome are alpha-helical transmembrane proteins and provide an extended classification together with in-depth investigations of the membrane proteome's functional, structural, and evolutionary features.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference44 articles.
1. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K, Lander ES: Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA. 2007, 104: 19428-19433. 10.1073/pnas.0709013104. 2. Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001, 305: 567-580. 10.1006/jmbi.2000.4315. 3. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al: Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062. 4. Ahram M, Litou ZI, Fang R, Al-Tawallbeh G: Estimation of membrane proteins in the human proteome. In Silico Biol. 2006, 6: 379-386. 5. Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G: Global topology analysis of the Escherichia coli inner membrane proteome. Science. 2005, 308: 1321-1323. 10.1126/science.1109730.
Cited by
504 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|