PMPTCE-HNEA: Predicting Metabolic Pathway Types of Chemicals and Enzymes with a Heterogeneous Network Embedding Algorithm

Author:

Wang Hao1,Chen Lei1

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China

Abstract

Background: Metabolic chemical reaction is one of the main types of fundamental processes to maintain life. Generally, each reaction needs an enzyme. The metabolic pathway collects a series of chemical reactions at the system level. As compounds and enzymes are two important components in each metabolic pathway, identification of metabolic pathways that a given compound or enzyme can participate is the first important step for understanding the mechanism of metabolic pathways. Objective: The purpose of this study was to build efficient computational methods to predict the metabolic pathways of compounds and enzymes. Methods: Novel multi-label classifiers were proposed to identify metabolic pathway types, reported in KEGG, of compounds and enzymes. Three heterogeneous networks defining compounds and enzymes as nodes were constructed. To extract more informative features of compounds and enzymes, we generalized the powerful network embedding algorithm, Mashup, to its heterogeneous network version, named MashupH. RAndom k-labELsets (RAKEL) was employed to build the classifiers and support vector machine or random forest was selected as the base classification algorithm. Results: The 10-fold cross-validation results indicated the good performance of the proposed classifiers and such performance was superior to the previous classifier that adopted features yielded by Mashup. Furthermore, some key parameters of MashupH that might contribute to or influence the classifiers were analyzed. Conclusion: The features yielded by MashupH were more informative than those produced by Mashup on heterogeneous networks. This was the main reason the new classifiers were superior to those using features yielded by Mashup.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3