Author:
Pierre Christophe,Jiang Dongying,Shaw Steven
Abstract
Recent progress in the area of nonlinear modal analysis for structural systems is reported. Systematic methods are developed for generating minimally sized reduced-order models that accurately describe the vibrations of large-scale nonlinear engineering structures. The general approach makes use of nonlinear normal modes that are defined in terms of invariant manifolds in the phase space of the system model. An efficient Galerkin projection method is developed, which allows for the construction of nonlinear modes that are accurate out to large amplitudes of vibration. This approach is successfully extended to the generation of nonlinear modes for systems that are internally resonant and for systems subject to external excitation. The effectiveness of the Galerkin-based construction of the nonlinear normal modes is also demonstrated for a realistic model of a rotating beam.
Subject
General Engineering,General Mathematics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献