Linear and Nonlinear Modes and Data Signatures in Dynamic Systems Biology Models

Author:

DiStefano Joseph1

Affiliation:

1. Departments of Computer Science and Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1596, USA

Abstract

The particulars of stimulus–response experiments performed on dynamic biosystems clearly limit what one can learn and validate about their structural interconnectivity (topology), even when collected kinetic output data are perfect (noise-free). As always, available access ports and other data limitations rule. For linear systems, exponential modes, visible and hidden, play an important role in understanding data limitations, embodied in what we call dynamical signatures in the data. We show here how to circumscribe and analyze modal response data in compartmentalizing model structures—so that modal analysis can be used constructively in systems biology mechanistic model building—for some nonlinear (NL) as well as linear biosystems. We do this by developing and exploiting the modal basis for dynamical signatures in hypothetical (perfect) input–output (I-O) data associated with a (mechanistic) structural model—one that includes inputs and outputs explicitly. The methodology establishes model dimensionality (size and complexity) from particular I-O datasets; helps select among multiple candidate models (model distinguishability); helps in designing new I-O experiments to extract “hidden” structure; and helps to simplify (reduce) models to their essentials. These modal analysis tools are introduced to NL enzyme-regulated and protein–protein interaction biosystems via nonlinear normal mode (NNM) and quasi-steady state approximation (QSSA) analyses and unified with linear models on invariant 2-dimensional manifolds in phase space, with properties similarly informative about their dominant dynamical properties. Some automation of these highly technical aspects of biomodeling is also introduced.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3