Finite-Element-Based Nonlinear Modal Reduction of a Rotating Beam with Large-Amplitude Motion

Author:

Apiwattanalunggarn Polarit1,Shaw Steven W.1,Pierre Christophe2,Jiang Dongying2

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA

2. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

A nonlinear one-dimensional finite-element model representing the axial and transverse motions of a cantilevered rotating beam is reduced to a single nonlinear normal mode using invariant manifold techniques. This system is an idealized representation for large-amplitude vibrations of a rotorcraft blade. Although this model is relatively simple, it possesses the essential nonlinear coupling effects between the axial and transverse degrees of freedom. The nature of this coupling leads to the fact that we must use many degrees of freedom, whether based on finite elements or modal expansions, in order to accurately represent the beam vibrations. In this work, the slow modal convergence problem is overcome by nonlinear modal reduction that makes use of invariant manifold based nonlinear modes. This reduction procedure generates a single-degree-of-freedom reduced-order model that systematically accounts for the dynamics of all the linear modes, or finite elements, considered in the original model. The approach is used to study the dynamic characteristics of the finite-element model over a wide range of vibration amplitudes. Using extensive simulations, it is shown that the response of the reduced-order model is nearly identical to a reference system which is based on a large-scale representation of the finite-element model, and to a reduced-order Rayleigh-Ritz model. All of the procedures presented here have been computationally automated. Hence, in this study we demonstrate that it is feasible and practical to interface nonlinear finite-element methods with nonlinear modal reduction.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3