Rockburst Monitoring in Deep Coalmines with Protective Coal Panels Using Integrated Microseismic and Computed Tomography Methods

Author:

Li Dong1,Zhang Junfei2ORCID

Affiliation:

1. School of Safety Engineering, North China Institute of Science and Technology, Beijing 101601, China

2. School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth 6009, Australia

Abstract

In deep coalmines, longwall panels are subject to high static initial geostress andhigh dynamic stress caused by mining and tunnelling activities. Under the action of high static and dynamic stress, rockburst hazards are very likely to occur. To reduce rockburst risks, protective panels are commonly applied in deep coalmines. However, stress concentration in the protective coal panel often causes rockburst hazards in the gateway of the next longwall panel pending mining. To reduce such type of rockburst, this study firstly proposes a mathematic model to analyse the overall static stress distribution in the protective panel based on the mining practice in Longyun coalmine, Shandong Province, China. To evaluate the stress concentration caused by geological defects in the protective panel, a new rockburst evaluation index is proposed based on the computed tomography (CT) method. Finally, the extent of dynamic stress evolution caused by different working face advancing velocities is determined by microseismic monitoring. Results show that the areas with higher rockburst evaluation indexes are highly associated with the areas with large-energy microseismic events, indicating that the static stress concentration can be accurately identified by the CT method. A medium advancing velocity (4.0 m/s) is recommend during mining the longwall panel, which can ensure mining safety and improve mining productivity simultaneously. The integrated microseismic and CT monitoring methods can be used in other underground projects to guarantee construction safety and productivity.

Funder

State Key Research Development Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3