Author:
Wu Zheng,Zhang Wen-Long,Li Chen
Abstract
An innovative monitoring-while-drilling method of pressure relief drilling was proposed in a previous study, and the periodic appearance of amplitude concentrated enlargement zone in vibration signals can represent the drilling depth. However, there is a lack of a high accuracy model to automatically identify the amplitude concentrated enlargement zone. So, in this study, a neural network model is put forward based on single-sensor and multi-sensor prediction results. The neural network model consists of one Deep Neural Network (DNN) and four Long Short-Term Memory (LSTM) networks. The accuracy is only 92.72% when only using single-sensor data for identification, while the proposed multiple neural network model could improve the accuracy to being greater than 97.00%. In addition, an optimization method was supplemented to eliminate some misjudgment due to data anomalies, which improved the final accuracy to the level of manual recognition. Finally, the research results solved the difficult problem of identifying the amplitude concentrated enlargement zone and provided the foundation for automatically identifying the drilling depth.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献