Mechanism and Prevention and Control of Mine Earthquake in Thick and Hard Rock Strata considering the Horizontal Stress Evolution of Stope

Author:

Zhang Ming12ORCID,Hu Xuelong1ORCID,Huang Hongtao3,Chen Guangyao3,Gao Shan3,Liu Chao3,Tian Lihua4

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China

3. Weishan Jinyuan Coal Mine, Jining 277600, China

4. Gaozhuang Coal Industry Co., Ltd, Zaozhuang Mining Group, Jining 277605, China

Abstract

This study investigated the mechanism, prevention measures, and control methods for earthquake disasters typically occurring in mines with thick and hard rock strata. A mine stope with large faults and thick hard rock strata in Hebei Province was taken as the background study object. Then, theoretical analysis and numerical simulation methods were adopted in conjunction with field monitoring to explore how horizontal stress evolves in the thick and hard hanging roofs of such mines, potentially leading to mining earthquakes. Then, based on the obtained results, a mining design method was proposed to reduce the horizontal stress levels of earthquake mitigation. The results showed that, under the control of large faults, semiopen and semiclosed stopes with thick hard rock strata are formed, which cause influentially pressurized and depressurized zones during the evolution of the overburden movements and horizontal stress. It was determined that the stress concentrations mainly originated from the release and transfer of horizontal stress during the rock fractures and movements in the roof areas, which were calculated using a theoretical estimation model. The horizontal stress concentrations formed “counter torques” at both ends of the thick and hard strata, which prevented the support ending due to tensile failures. As a result, the limit spans were increased. This study proposed a mining strategy of using narrow working faces, strip mining processes, and reasonable mining speeds, which could effectively reduce horizontal stress concentrations and consequently prevent and control mining earthquakes. This study’s research results were successfully applied to the mining practices in working face 16103.

Funder

State Key Laboratory of Coal Resources and Safe Mining

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3