Study on the Instability Mechanism and Grouting Reinforcement Repair of Large-Scale Underground Stopes

Author:

Xie Chengyu1ORCID,Jia Nan2ORCID,He Liwen1

Affiliation:

1. School of Environment and Resources, Xiang Tan University, XiangTan 411105, China

2. Institute of Public Safety Research, Tsinghua University, Beijing 100084, China

Abstract

The environmental conditions due to unreasonable mining in underground stopes, the slurry diffusion mechanism in the grouting reinforcement of a stope within its influence, the causes of large-scale instability collapse, and the catastrophic stope process are analyzed, and limit upper line analysis theory and numerical analysis methods are comprehensively adopted, revealing the continuous catastrophic collapse mode of large-scale underground stopes. The method of determining the stope instability collapse boundary and the slip surface within the range based on the theory of the maximum shear strain increment is proposed, and the diffusion radius and range of the grouting slurry during the reinforcement process, which considers the multifield coupling factors, are obtained. The results show that the U-shaped hidden danger area formed after the collapse of the large-scale underground stope. The influence range reaches six adjacent stopes, which are symmetrically distributed around the collapse; the mining instability is manifested as a catastrophic chain process of stress change, energy accumulation, state change, and instability collapse. The damage mode of instability collapse is a combination method of wedge collapse, circular arc rotation, triangular translation, and strip slip. According to the multiphysics coupling numerical calculation, the diffusion radius of the grouting slurry is 12 m, exhibiting an elliptical distribution. The research results can be used to comprehensively control the underground mining environment, thus effectively solving the safety problems faced by tunnel or roadway excavations above the goaf.

Funder

Education Department of Hunan Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3