A Three-Dimensional Nonlinear Dynamic Numerical Optimization of the Risks of Stope Blasting Based on FOA-GRNN

Author:

Xie Chengyu1ORCID,Cao Jie1ORCID,Shi Dongping1

Affiliation:

1. School of Environment and Resources, Xiangtan University, Xiang Tan 411105, China

Abstract

The fruit fly optimization algorithm-general regression neural network (FOA-GRNN) coupled model and the Finite Element Method-Smoothed Particle Hydrodynamics (FEM-SPH) numerical calculation method are comprehensively used. The control problem of blasting vibration in the process of mining hidden resources under complex environmental conditions has been studied. Taking a lead-zinc mine as the engineering background, the development of hidden resources in the collapse area due to unreasonable mining was studied. Based on the establishment of the first mining stope and its mining method in this area, biosimulation and generalized neural networks were introduced to solve this problem, the coupling of blasting parameters was analyzed, and the 3D nonlinear dynamic coupling model was constructed for numerical simulation. The results show that the blasting parameters of deep-hole mining were optimized, including the values of six output quantities: hole distance, row spacing, side hole distance, explosive unit consumption, minimum resistance line, and interval ratio (the Root Mean Squared Error value is only 0.051). The error between the network optimization parameters and the empirically obtained values was controlled to within 0.05; five possible edge-hole charge structures were designed (the interval ratio is 0.696), and the vibration velocity peak and pressure peak variations with time after detonation are reflected by the simulation results. The dynamic evolution law of the rock mass velocity vector and the damage of the rock damage was revealed. According to the analysis in this paper, the smallest and optimal edge-hole charge structure of the surrounding rock was obtained.

Funder

Hunan Province Science Foundation

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent mine safety risk based on knowledge graph: hotspots and frontiers;Environmental Science and Pollution Research;2024-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3