Development of Deep Convolutional Neural Network with Adaptive Batch Normalization Algorithm for Bearing Fault Diagnosis

Author:

Fu Chao1,Lv Qing1,Lin Hsiung-Cheng2ORCID

Affiliation:

1. Hebei Normal University, Shijiazhuang 050024, China

2. National Chin-Yi University of Technology, Taichung 41170, Taiwan

Abstract

It is crucial to carry out the fault diagnosis of rotating machinery by extracting the features that contain fault information. Many previous works using a deep convolutional neural network (CNN) have achieved excellent performance in finding fault information from feature extraction of detected signals. They, however, may suffer from time-consuming and low versatility. In this paper, a CNN integrated with the adaptive batch normalization (ABN) algorithm (ABN-CNN) is developed to avoid high computing resource requirements of such complex networks. It uses a large-scale convolution kernel at the grassroots level and a multidimensional 3 × 1 small convolution nuclear. Therefore, a fast convergence and high recognition accuracy under noise and load variation environment can be achieved for bearing fault diagnosis. The performance results verify that the proposed model is superior to Support Vector Machine with Fast Fourier Transform (FFT-SVM) and Multilayer Perceptron with Fast Fourier Transform (FFT-MLP) models and Deep Neural Network with Fast Fourier Transform (FFT-DNN).

Funder

Department of Education of Hebei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3