Fuzzy Identification of The Reliability State of The Mine Detecting Ship Propulsion System

Author:

Pająk Michał1,Muślewski Łukasz2,Landowski Bogdan2,Grządziela Andrzej3

Affiliation:

1. University of Technology and Humanities , Radom , Poland

2. University of Science and Technology , Bydgoszcz , Poland

3. Polish Naval Academy , Poland

Abstract

Abstract The study presents the evaluation and comparative analysis of engine shaft line performance in maritime transport ships of the same type. During its operation, a technical system performs functions for which it was designed. It goes through different states. Dynamic state changes of a rotational system can be identified by means of its vibration measurement. For this purpose, a research was carried out which involved recording vibrations of the analysed rotational systems. The recordings were used for calculating selected characteristics in the time-domain, where one of the most unique is the value of the normalized mutual correlation function. On the basis of the concentration values, the characteristics which unambiguously determine the ability state were selected for further studies. Then an identification method for rotational system non-coaxiality was proposed. The method involves using fuzzy clustering. According to this method the values of input signal characteristics were used to formulate fuzzy clusters of system ability and inability states. The method can be used for identifying the current state of the system. The study presents the results of the application of this method in engine turbine shaft lines of minesweepers, with the rotational system selected as an example. It needs to be noted that the efficiency of identifying the operating state of the system with this method is higher than with other methods described in the literature by authors who deal with this issue. The research results have a significant impact on the evaluation of mechanical properties of the studied objects and directly affect operational states of mechanical systems, including those installed in minesweepers, thus determining their reliability.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3