A Method for Identification of Non-Coaxiality in Engine Shaft Lines of a Selected Type of Naval Ships

Author:

Grządziela Andrzej,Musiał Janusz1,Muślewski D. Łukasz,Pająk D. Michał

Affiliation:

1. Faculty of Mechanical Engineering University of Science and Technology 7 Prof. Kaliskiego Ave.

Abstract

Abstract A correctly designed machine is characteristic of low vibration values. However wear processes occur during its operation. They are accompanied by a lack of balance of its rotating parts and elements, which results in non-coaxiality of shafts. For this reason energy and dynamic load resulting from machine vibrations grows. In this case cause and effect are mutually connected by feedback, that inevitably leads to occurrence of a failure. This paper presents results of investigations carried out on the basis of vibration analysis of propulsion systems installed on 207P minesweepers. In view of specific features of their operation it is very important to ensure high level of reliability for them. For this reason was done an attempt to develop a method intended for identifying non-coaxiality of shaft line systems of engines propelling the ships. 16 characteristic features of recorded vibration signals were selected. As any of them has not satisfied criteria assigned to features which unambiguously determine state of reliability of shaft line systems, the investigations have been continued and as a result a novel method for non-coaxiality identification was proposed. The method consists in determining unserviceability clusters and assumes that characteristic features are of a concentrated character. This way a non-coaxiality of main engine shaft lines of 207P minesweepers could be detected. This paper presents the proposed method and results of its application to the case in question.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3