Intelligent SLA-Aware VM Allocation and Energy Minimization Approach with EPO Algorithm for Cloud Computing Environment

Author:

Samriya Jitendra Kumar1ORCID,Chandra Patel Subhash2ORCID,Khurana Manju3ORCID,Tiwari Pradeep Kumar4ORCID,Cheikhrouhou Omar5ORCID

Affiliation:

1. Department of Information Technology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India

2. School of Computer Science and Engineering, VIT Bhopal University, Bhopal, India

3. Computer Science and Engineering Department, Thapar Institute of Engineering and Technology (TIET), Patiala, India

4. Manipal University Jaipur, Jaipur, India

5. College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia

Abstract

Cloud computing is the most prominent established framework; it offers access to resources and services based on large-scale distributed processing. An intensive management system is required for the cloud environment, and it should gather information about all phases of task processing and ensuring fair resource provisioning through the levels of Quality of Service (QoS). Virtual machine allocation is a major issue in the cloud environment that contributes to energy consumption and asset utilization in distributed cloud computing. Subsequently, in this paper, a multiobjective Emperor Penguin Optimization (EPO) algorithm is proposed to allocate the virtual machines with power utilization in a heterogeneous cloud environment. The proposed method is analyzed to make it suitable for virtual machines in the data center through Binary Gravity Search Algorithm (BGSA), Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO). To compare with other strategies, EPO is energy-efficient and there are significant differences. The results of the proposed system have been evaluated through the JAVA simulation platform. The exploratory outcome presents that the proposed EPO-based system is very effective in limiting energy consumption, SLA violation (SLAV), and enlarging QoS requirements for giving capable cloud service.

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3