Dynamic task scheduling in edge cloud systems using deep recurrent neural networks and environment learning approaches

Author:

Ammavasai S.K.1

Affiliation:

1. Department of Information Technology, SSN College of Engineering, Rajiv Gandhi Salai, Kalavakkam, Tamil Nadu, India

Abstract

The rapid growth of the cloud computing landscape has created significant challenges in managing the escalating volume of data and diverse resources within the cloud environment, catering to a broad spectrum of users ranging from individuals to large corporations. Ineffectual resource allocation in cloud systems poses a threat to overall performance, necessitating the equitable distribution of resources among stakeholders to ensure profitability and customer satisfaction. This paper addresses the critical issue of resource management in cloud computing through the introduction of a Dynamic Task Scheduling with Virtual Machine allocation (DTS-VM) strategy, incorporating Edge-Cloud computing for the Internet of Things (IoT). The proposed approach begins by employing a Recurrent Neural Network (RNN) algorithm to classify user tasks into Low Priority, Mid Priority, and High Priority categories. Tasks are then assigned to Edge nodes based on their priority, optimizing efficiency through the application of the Spotted Hyena Optimization (SHO) algorithm for selecting the most suitable edge node. To address potential overloads on the edge, a Fuzzy approach evaluates offloading decisions using multiple metrics. Finally, optimal Virtual Machine allocation is achieved through the application of the Stable Matching algorithm. The seamless integration of these components ensures a dynamic and efficient allocation of resources, preventing the prolonged withholding of customer requests due to the absence of essential resources. The proposed system aims to enhance overall cloud system performance and user satisfaction while maintaining organizational profitability. The effectiveness of the DTS-VM strategy is validated through comprehensive testing and evaluation, showcasing its potential to address the challenges posed by the diverse and expanding cloud computing landscape.

Publisher

IOS Press

Reference35 articles.

1. Survey on task scheduling in cloud computing environment;Hui Wang;2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS),2022

2. A survey on task scheduling algorithms in cloud computing for fast big data processing;Zahra Jalalian;International Journal of Information and Communication Technology Research,2021

3. Computation offloading in mobile cloud computing and mobile edge computing: Survey, taxonomy, and open issues;Mohammed Maray;Mobile Information Systems,2022

4. A survey of security in cloud, edge, and fog computing;Aleksandr Ometov,;Sensors (Basel, Switzerland),2022

5. Cloud-edge computing-based ICICOS framework for industrial automation and artificial intelligence: A survey;Weibin Su,;J Circuits Syst Comput,2350

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3