SSEPC cloud: Carbon footprint aware power efficient virtual machine placement in cloud milieu

Author:

Parida Bivasa1,Rath Amiya2,Pati Bibudhendu3,Panigrahi Chhabi3,Mohapatra Hitesh4,Tien-Hsiungweng T5,Buyya Rajkumar6

Affiliation:

1. Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India

2. Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India + Biju Patnaik University of Technology, Rourkela, Odisha, India

3. Department of Computer Science, Rama Devi Women’s University, Bhubaneswar, Odisha, India

4. School of Computer Engineering, KIIT University, Bhubaneswar, Odisha, India

5. Department of Computer Science and Information Engineering, Providence University, Taiwan

6. Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, University of Melbourne, Australia

Abstract

The consumption of energy and carbon emission in cloud datacenters are the alarming issues in recent times, while optimizing the average response time and service level agreement (SLA) violations. Handful of researches have been conducted in these domains during virtual machine placement (VMP) in cloud milieu. Moreover it is hard to find researches on VMP considering the cloud regions and the availability zones along with the datacenters, although both of them play significant roles in VMP. Hence, we have worked on a novel approach to propose a hybrid metaheuristic technique combining the salp swarm optimization and emperor penguins colony algorithm, i.e. SSEPC to place the virtual machines in the most suitable regions, availability zones, datacenters, and servers in a cloud environment, while optimizing the mentioned quality of service parameters. Our suggested technique is compared with some of the contemporary hybrid algorithms in this direction like Sine Cosine Algorithm and Salp Swarm Algorithm (SCA-SSA), Genetic Algorithm and Tabu-search Algorithm (GATA), and Order Exchange & Migration algorithm and Ant Colony System algorithm (OEMACS) to test its efficacy. It is found that the proposed SSEPC is consuming 4.4%, 8.2%, and 16.6% less energy and emitting 28.8%, 32.83%, and 37.45% less carbon, whereas reducing the average response time by 11.43%, 18.57%, and 26% as compared to its counterparts GATA, OEMACS, and SCA-SSA respectively. In case of SLA violations, SSEPC has shown its effectiveness by lessening the value of this parameter by 0.4%, 1.2%, and 2.8% as compared to SCA-SSA, GATA, and OEMACS respectively.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3