Inhibitory Effects of Myricetrin and Dihydromyricetin toward α-Glucosidase and Pancreatic Lipase with Molecular Docking Analyses and Their Interaction

Author:

Mi Siyuan12,Liu Jia3,Liu Xiaojing1ORCID,Fu Yishan1,Yi Junjie1ORCID,Cai Shengbao1ORCID

Affiliation:

1. Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China

2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China

3. Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Interventionfor Chronic Disease, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China

Abstract

The aim of the current study was to evaluate the interaction effects of myricetrin and dihydromyricetin in inhibiting α-glucosidase and pancreatic lipase at different combination ratios and concentrations and to illuminate the underlying mechanisms of their inhibitions by molecular docking analyses. Results showed that both phenolic compounds possessed good inhibitory effects toward two enzymes in a dose-dependent manner. Myricetrin demonstrated a stronger inhibition against α-glucosidase (IC50, 41.14 ± 2.52 and more than 200 μg/mL, respectively), while dihydromyricetin had a better pancreatic lipase inhibition (IC50, 244.96 ± 4.24 and 373.26 ± 21.36 μg/mL, respectively). Different interaction types were observed when myricetrin and dihydromyricetin inhibited α-glucosidase and pancreatic lipase in combination, which were closely related to the combination ratio and concentration. For α-glucosidase inhibition, synergistic effects were observed at relative low concentrations when the combination ratio of myricetrin to dihydromyricetin was set as 1 : 2, while strong synergistic effects existed at relative high concentrations for pancreatic lipase inhibition. In other combination ratios (1 : 1 or 2 : 1), additive and/or antagonistic effects occurred. Molecular docking analyses showed that myricetrin formed nine hydrogen bonds with α-glucosidase, while only three hydrogen bonds were formed between dihydromyricetin and α-glucosidase. However, these two phenolic compounds had similar hydrogen bonds and hydrophobic interactions with pancreatic lipase. The present study suggested that myricetrin and dihydromyricetin or food materials rich in these two phenolic compounds could be exploited as α-glucosidase and/or pancreatic lipase inhibitors to deal with health problems caused by excessive energy intake, and the combination ratio and concentration of these two phenolic compounds should be considered when producing new functional foods.

Funder

Applied Basic Research Project of Yunnan Province

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3