Affiliation:
1. Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
Abstract
In the monitoring process of wind turbines the utmost attention should be given to gearboxes. This conclusion is derived from numerous summary papers. They reveal that, on the one hand, gearboxes are one of the most fault susceptible elements in the drive-train and, on the other, the most expensive to replace. Although state-of-the-art CMS can usually provide advanced signal processing tools for extraction of diagnostic information, there are still many installations, where the diagnosis is based simply on the averaged wideband features like root-mean-square (RMS) or peak-peak (PP). Furthermore, for machinery working in highly changing operational conditions, like wind turbines, those estimators are strongly fluctuating, and this fluctuation is not linearly correlated to operation parameters. Thus, the sudden increase of a particular feature does not necessarily have to indicate the development of fault. To overcome this obstacle, it is proposed to detect a fault development with Artificial Neural Network (ANN) and further observation of linear regression parameters calculated on the estimation error between healthy and unknown condition. The proposed reasoning is presented on the real life example of ring gear fault in wind turbine’s planetary gearbox.
Funder
AGH University of Science and Technology
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献