Abstract
Most high capacity anode materials for lithium-ion batteries (LiB) require a carbonaceous matrix. In this context one promising material is reduced graphene oxide (rGO). Herein, we present the influence of different reduction degrees of rGO on its physico-chemical properties, such as crystallinity, specific surface area, electrical conductivity and electrochemical lithiation/delithiation behavior. It is found that a heat treatment under inert and reducing atmospheres increases the long-range order of rGO up to a temperature of 700 °C. At temperatures around 1000 °C, the crystallinity decreases. With decreasing oxygen content, a linear decrease in irreversible capacity during cycle 1 can be observed, along with a significant increase in electrical conductivity. This decrease in irreversible capacity can be observed despite an increase in specific surface area indicating the more significant influence of the oxygen content on the capacity loss. Consequently, the reversible capacity increases continuously up to a carbon content of 84.4 at% due to the thermal reduction. Contrary to expectations, the capacity decreases with further reduction. This can be explained by the loss of functional groups that will be lithiated reversibly, and a simultaneous reduction of long-range order, as concluded from dq/dU analysis in combination with XRD analysis.
Funder
Bundesministerium für Wirtschaft und Energie
Deutsche Forschungsgemeinschaft
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献