Prediction of the belt drive contamination status based on vibration analysis and artificial neural network

Author:

Baqer Ihsan A.1,Jaber Alaa Abdulhady1,Soud Wafa A.1

Affiliation:

1. Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq

Abstract

Belt drive contamination is considered one of the most common failure modes that could be developed in the belts due to harsh operation conditions, high humidity, and sunlight exposure, reducing the belt’s performance. If the belt failure has not been detected early, a sudden shutdown may happen, producing safety and economic consequences. However, most maintenance personnel use their senses of sight, hearing, smell, and touch to identify the cause of the problem while diagnosing a belt drive condition. Hence, this research involves developing an intelligent contamination status detection system based on vibration signal analysis for a pulley-belt rotating system. Time-domain signal analysis was employed to extract some suggestive features such as the root mean square, kurtosis, and skewness from the vibration data. An artificial neural network (ANN) model was built to detect the simulated different operating conditions. The vibration data was gathered with the help of two MEMS accelerometers (ADXL335) interfaced with an NI USB-6009 data acquisition device. A signal capture, analysis, and feature extraction system was developed using Matlab Simulink. The simulated operating conditions include clean, wet, and powder-contaminated belts. The results showed that the designed system could identify the pulley-belt operation conditions with 100% overall accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3