Food-Origin Mycotoxin-Induced Neurotoxicity: Intend to Break the Rules of Neuroglia Cells

Author:

Pei Xingyao1ORCID,Zhang Wenjuan2,Jiang Haiyang1ORCID,Liu Dingkuo3,Liu Xinyu2,Li Liuan2,Li Cun2,Xiao Xilong1,Tang Shusheng1ORCID,Li Daowen234ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China

2. Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No. 22, Xiqing District, Tianjin 300384, China

3. Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China

4. State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No. 38, Tianjin 300353, China

Abstract

Mycotoxins are key risk factors in human food and animal feed. Most of food-origin mycotoxins could easily enter the organism and evoke systemic toxic effects, such as aflatoxin B1 (AFB1), ochratoxin A (OTA), T-2 toxin, deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), and 3-nitropropionic acid (3-NPA). For the last decade, the researches have provided much evidences in vivo and in vitro that the brain is an important target organ on mycotoxin-mediated neurotoxic phenomenon and neurodegenerative diseases. As is known to all, glial cells are the best regulator and defender of neurons, and a few evaluations about the effects of mycotoxins on glial cells such as astrocytes or microglia have been conducted. The fact that mycotoxin contamination may be a key factor in neurotoxicity and glial dysfunction is exactly the reason why we reviewed the activation, oxidative stress, and mitochondrial function changes of glial cells under mycotoxin infection and summarized the mycotoxin-mediated glial cell proliferation disorders, death pathways, and inflammatory responses. The purpose of this paper is to analyze various pathways in which common food-derived mycotoxins can induce glial toxicity and provide a novel perspective for future research on the neurodegenerative diseases.

Funder

China Agricultural University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3