Integrated Optimization on Train Control and Timetable to Minimize Net Energy Consumption of Metro Lines

Author:

Zhou Yuhe1ORCID,Bai Yun1ORCID,Li Jiajie1ORCID,Mao Baohua1ORCID,Li Tang2ORCID

Affiliation:

1. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China

2. Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Energy-efficient metro operation has received increasing attention because of the energy cost and environmental concerns. This paper developed an integrated optimization model on train control and timetable to minimize the net energy consumption. The extents of train motoring and braking as well as timetable configurations such as train headway and interstation runtime are optimized to minimize the net energy consumption with consideration of utilizing regenerative energy. An improved model on train control is proposed to reduce traction energy by allowing coasting on downhill slopes as much as possible. Variations of train mass due to the change of onboard passengers are taken into account. The brute force algorithm is applied to attain energy-efficient speed profiles and an NS-GSA algorithm is designed to attain the optimal extents of motoring/braking and timetable configurations. Case studies on Beijing Metro Line 5 illustrate that the improved train control approach can save traction energy consumption by 20% in the sections with steep downhill slopes, in comparison with the commonly adopted train control sequence in timetable optimization. Moreover, the integrated model is able to significantly prolong the overlapping time between motoring and braking trains, and the net energy consumption is accordingly reduced by 4.97%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3