Research on the cooperative train control method in the metro system for energy saving

Author:

Li Siyao,Yuan Bo,Bai Yun,Liu Jianfeng

Abstract

PurposeTo address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure, energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approachA cooperative train control framework is formulated to regulate a novel train operation mode. The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train. An improved brute force (BF) algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.FindingsCase studies on the actual metro line in Guangzhou, China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters. The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/valueMost existing studies optimised energy-efficient train timetable or train control strategies through an offline process, which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation. This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea, where energy-efficient train operation can be realised once train running time is determined, thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.

Publisher

Emerald

Reference20 articles.

1. Cooperative control of metro trains to minimize net energy consumption;IEEE Transactions on Intelligent Transportation Systems,2019

2. Cooperative control strategy for energy saving operation of metro train based on rolling optimization;China Railway Sciences,2020

3. Optimization on energy-efficient operations for trailing train in urban rail system with fixed run-time;Journal of the China Railway Society,2017

4. Energy saving in metro transit substation through train trajectory optimization,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3