Numerical Investigation into the Critical Speed and Frequency of the Hunting Motion in Railway Vehicle System

Author:

Sun Jianfeng1ORCID,Chi Maoru1ORCID,Cai Wubin1ORCID,Jin Xuesong1ORCID

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, China

Abstract

The critical speed and hunting frequency are two basic research objects of vehicle system dynamics and have a significant influence on the dynamic performance. A lateral dynamic model with 17 degrees of freedom was established in this study to investigate the critical speed and hunting frequency of a high-speed railway vehicle. The nonlinearities of wheel/rail contact geometry, creep forces, and yaw damper were all considered. A heuristic nonlinear creep model was employed to estimate the contact force between the wheel and the rail. The Maxwell model, which covers the influence of the stiffness characteristic, is used to simulate the yaw damper. To reflect the blow-off of the yaw damper, the damping coefficient is described by stages. Based on the mathematical model, the combined effects of vehicle parameters on the critical speed in the straight line and hunting frequency of the wheelset were investigated innovatively. The novel phenomenon that the hunting frequency exhibits a sudden increase from a smaller value to a larger value when the blow-off of the yaw damper occurs was discovered during the calculations. The extents to which various parameters affect the critical speed and hunting frequency are clear on the basis of the numerical results. Moreover, all of the parameter values were divided into three sections to determine the sensitive range for the critical speed and hunting frequency. The results show that the first section of values plays the decisive role on both the critical speed and the hunting frequency for all parameters analyzed. The investigation in this paper enriches the study of hunting stability and gives some ideas to probably solve the abnormal vibrations during the actual operation.

Funder

National Science Foundation for Young Scholars

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential parametrization of rail vehicle properties and its impact on hunting;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2023-06-28

2. Numerical and experimental investigation on parameters determination of the suspension system for a high-speed train aiming at cross-line operation;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2023-06-06

3. Hunting frequency variation mechanism and its effect on carbody hunting stability for railway vehicles;Acta Mechanica Sinica;2023-05-22

4. Improved Interval Prediction of Small-Amplitude Hunting of High-Speed Trains;IEEE Transactions on Instrumentation and Measurement;2023

5. On the nonlinear hunting stability of a high-speed train bogie;Nonlinear Dynamics;2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3